Муниципальное казенное общеобразовательное учреждение «Средняя общеобразовательная школа №1 г. Киренска»

Программа учебного предмета

ФИЗИКА для 10-11 классов

срок реализации программы:2 года

Составитель: Шевцова Т.А., учитель I квалификационной категории МКОУ СОШ №1 г. Киренска

2022 г. ПОЯСНИТЕЛЬНАЯ ЗАПИСКА Рабочая программа составлена на основе требований к результатам освоения ООП СОО с учетом программ, включенных в ее структуру.

Место предмета в учебном плане: обязательная часть.

Предметная область: естественные науки.

Количество учебных часов, на которые рассчитана программа:

Класс	10	11
Количество учебных недель	34	34
Количество часов в неделю	2	2
Количество часов в год	68	68

При реализации программы используются учебники, включенные в федеральный перечень:

Порядковый	Автор	Наименование	Класс	Издатель
номер учебника		учебника		учебника
	Г.Я.Мякишев,			
1.1.3.5.1.7.1	Б.Б.Буховцев,	Физика	10	Просвещение
	Н.Н. Сотский			_
	Г.Я.Мякишев,			
1.1.3.5.1.7.2	Б.Б.Буховцев,	Физика	11	Просвещение
	Н.Н. Сотский			

Планируемые результаты освоения учебного предмета «Физика»

Личностными результатами освоения выпускниками средней школы программы по физике являются:

- умение управлять своей познавательной деятельностью;
- готовность и способность к образованию, в том числе самообразованию, на протяжении всей жизни; сознательное отношение к непрерывному образованию как условию успешной профессиональной и общественной деятельности;
- умение сотрудничать с взрослыми, сверстниками, детьми младшего возраста в образовательной, учебно-исследовательской, проектной и других видах деятельности;
- сформированность мировоззрения, соответствующего современному уровню развития науки; осознание значимости науки, владения достоверной информацией о передовых достижениях и открытиях мировой и отечественной науки; заинтересованность в научных знаниях об устройстве мира и общества; готовность к научнотехническому творчеству;
- чувство гордости за отечественную физическую науку, гуманизм;

- положительное отношение к труду, целеустремлённость;
- экологическая культура, бережное отношение к родной земле, природным богатствам России и мира, понимание ответственности за состояние природных ресурсов и разумное природопользование.

Метапредметными результатами освоения выпускниками средней школы программы по физике являются:

- 1. освоение регулятивных универсальных учебных действий:
- самостоятельно определять цели, ставить и формулировать собственные задачи в образовательной деятельности и жизненных ситуациях;
- оценивать ресурсы, в том числе время и другие нематериальные ресурсы, необходимые для достижения поставленной ранее цели;
- сопоставлять имеющиеся возможности и необходимые для достижения цели ресурсы;
- определять несколько путей достижения поставленной цели;
- задавать параметры и критерии, по которым можно определить, что цель достигнута;
- сопоставлять полученный результат деятельности с поставленной заранее целью;
- осознавать последствия достижения поставленной цели в деятельности, собственной жизни и жизни окружающих людей;
- освоение познавательных универсальных учебных действий:
- критически оценивать и интерпретировать информацию с разных позиций;
- распознавать и фиксировать противоречия в информационных источниках;
- использовать различные модельно-схематические средства для представления выявленных в информационных источниках противоречий;
- осуществлять развёрнутый информационный поиск и ставить на его основе новые (учебные и познавательные) задачи;
- искать и находить обобщённые способы решения задач;
- приводить критические аргументы как в отношении собственного суждения, так и в отношении действий и суждений другого человека;
- анализировать и преобразовывать проблемно-противоречивые ситуации;
- выходить за рамки учебного предмета и осуществлять целенаправленный поиск возможности широкого переноса средств и способов действия;
- выстраивать индивидуальную образовательную траекторию, учитывая ограничения со стороны других участников и ресурсные ограничения;
- занимать разные позиции в познавательной деятельности (быть учеником и учителем; формулировать образовательный запрос и

выполнять консультативные функции самостоятельно; ставить проблему и работать над её решением; управлять совместной познавательной деятельностью и подчиняться);

- освоение коммуникативных универсальных учебных действий:
- осуществлять деловую коммуникацию как со сверстниками, так и с взрослыми (как внутри образовательной организации, так и за её пределами);
- при осуществлении групповой работы быть как руководителем, так и членом проектной команды в разных ролях (генератором идей, критиком, исполнителем, презентующим и т. д.);
- развёрнуто, логично и точно излагать свою точку зрения с использованием адекватных (устных и письменных) языковых средств;
- распознавать конфликтогенные ситуации и предотвращать конфликты до их активной фазы;
- согласовывать позиции членов команды в процессе работы над общим продуктом (решением);
- представлять публично результаты индивидуальной и групповой деятельности как перед знакомой, так и перед незнакомой аудиторией;
- подбирать партнёров для деловой коммуникации, исходя из соображений результативности взаимодействия, а не личных симпатий;
- воспринимать критические замечания как ресурс собственного развития;
- точно и ёмко формулировать как критические, так и одобрительные замечания в адрес других людей в рамках деловой и образовательной коммуникации, избегая при этом личностных оценочных суждений.

Предметными результатами освоения выпускниками средней школы программы по физике являются:

Выпускник на базовом уровне научится:

- демонстрировать на примерах роль и место физики в формировании современной научной картины мира, в развитии современной техники и технологий, в практической деятельности людей;
- демонстрировать на примерах взаимосвязь между физикой и другими естественными науками;
- устанавливать взаимосвязь естественнонаучных явлений и применять основные физические модели для их описания и объяснения;
- использовать информацию физического содержания при решении учебных, практических, проектных и исследовательских задач, интегрируя информацию из различных источников и критически ее оценивая;
- различать и уметь использовать в учебно-исследовательской деятельности методы научного познания (наблюдение, описание, измерение, эксперимент, выдвижение гипотезы, моделирование и др.) и

- формы научного познания (факты, законы, теории), демонстрируя на примерах их роль и место в научном познании;
- проводить прямые и косвенные изменения физических величин, выбирая измерительные приборы с учетом необходимой точности измерений, планировать ход измерений, получать значение измеряемой величины и оценивать относительную погрешность по заданным формулам;
- проводить исследования зависимостей между физическими величинами: проводить измерения определять основе исследования значение параметров, характеризующих данную зависимость между величинами, и делать вывод с учетом погрешности измерений;
- использовать для описания характера протекания физических процессов физические величины и демонстрировать взаимосвязь между ними;
- использовать для описания характера протекания физических процессов физические законы с учетом границ их применимости;
- решать качественные задачи (в том числе и межпредметного характера): используя модели, физические величины и законы, выстраивать логически верную цепочку объяснения (доказательства) предложенного в задаче процесса (явления);
- решать расчетные задачи с явно заданной физической моделью: на основе анализа условия задачи выделять физическую модель, находить физические величины и законы, необходимые и достаточные для ее решения, проводить расчеты и проверять полученный результат;
- учитывать границы применения изученных физических моделей при решении физических и межпредметных задач;
- использовать информацию и применять знания о принципах работы и основных характеристиках изученных машин, приборов и других технических устройств для решения практических, учебноисследовательских и проектных задач;
- использовать знания о физических объектах и процессах в повседневной жизни для обеспечения безопасности при обращении с приборами и техническими устройствами, для сохранения здоровья и соблюдения норм экологического поведения в окружающей среде, для принятия решений в повседневной жизни.

Содержание учебного предмета

10 класс (68 часов, 2 ч в неделю)

Введение (1 ч)

Физика — фундаментальная наука о природе. Научный метод познания. Методы исследования физических явлений. Моделирование физических явлений и процессов. Научные факты и гипотезы. Физические законы и границы их применимости. Физические теории и принцип соответствия. Физические величины. Погрешности измерения физических величин. Роль и место физики в формировании современной научной картины мира, в практической деятельности людей. Физика и культура.

Механика (26 ч)

Границы применимости классической механики. Пространство и время. Относительность механического движения. Системы отсчёта. Скалярные и векторные физические величины. Траектория. Путь. Перемещение. Скорость. Ускорение. Равномерное и равноускоренное прямолинейное движение. Равномерное движение по окружности. Взаимодействие тел. Явление инерции. Сила. Масса. Инерциальные системы отсчета. Законы динамики Ньютона. Сила тяжести, вес, невесомость. Сила упругости, сила трения. Законы: всемирного тяготения, Гука, трения. Использование законов объяснения движения небесных тел и для ДЛЯ механики космических исследований. Импульс материальной точки и системы. Закон сохранения импульса. Механическая Импульс силы. работа. Мощность. Механическая энергия материальной точки и системы. Закон сохранения механической энергии. Работа силы тяжести и силы упругости. Равновесие материальной точки и твердого тела. Момент силы. Условия равновесия.

Лабораторные работы:

- 1. Изучение движения тела по окружности.
- 2. Изучение закона сохранения механической энергии.

Молекулярная физика. Термодинамика (17 ч)

Молекулярно-кинетическая теория (МКТ) строения вещества, ее экспериментальные доказательства. Тепловое равновесие. Абсолютная температура как мера средней кинетической энергии теплового движения частиц вещества. Модель идеального газа. Давление газа. Уравнение состояния идеального газа. Уравнение Менделеева–Клапейрона. Газовые законы. Агрегатное состояние вещества. Взаимные превращения жидкостей и газов. Влажность воздуха. Модель строения жидкостей. Поверхностное

натяжение. Кристаллические и аморфные тела. Внутренняя энергия. Работа и теплопередача как способы изменения внутренней энергии. Уравнение теплового баланса. Первый закон термодинамики. Необратимость тепловых процессов. Принципы действия и КПД тепловых машин.

Лабораторная работа:

3. Экспериментальная проверка закона Гей-Люссака.

Электродинамика (23 ч)

Электрические заряды. Закон сохранения электрического заряда. Закон Напряжённость Кулона. Электрическое поле. И потенциал электростатического поля. Линии напряжённости и эквипотенциальные поверхности. Принцип суперпозиции полей. Проводники и диэлектрики в поле. Электроемкость. Конденсатор. Постоянный электрическом Сопротивление. Последовательное электрический ток. Сила тока. соединение Закон параллельное проводников. Джоуля–Ленца. Электродвижущая сила. Закон Ома для полной цепи. Электрический ток в проводниках, электролитах, полупроводниках, газах вакууме. Сверхпроводимость.

Лабораторные работы:

- 4. Последовательное и параллельное соединение проводников.
- 5. Измерение ЭДС и внутреннего сопротивления источника тока.

Итоговая контрольная работа (1 ч)

Обобщение (1 ч)

11 класс (68 часов, 2 ч в неделю)

Электродинамика (11 ч)

Взаимодействие токов. Магнитное поле. Вектор индукции магнитного поля. Сила Ампера. Электроизмерительные приборы. Сила Лоренца. Магнитные свойства вещества. Явление электромагнитной индукции. Магнитный поток. Правило Ленца. Закон электромагнитной индукции. ЭДС индукции в движущихся проводниках. Явление самоиндукции. Индуктивность. Электромагнитное поле. Энергия электромагнитного поля.

Лабораторные работы:

- 1. Наблюдение действия магнитного поля на ток.
- 2. Изучение явления электромагнитной индукции.

Колебания и волны (20 ч)

Механические колебания. Свободные колебания. Математический маятник. Гармонические колебания. Амплитуда, период, частота и фаза колебаний. колебания. Резонанс. Электромагнитные Вынужденные колебания. колебания Свободные колебательном контуре. Период свободных В колебаний. электрических Вынужденные колебания. Переменный электрический ток. Активное сопротивление. Действующие значения силы тока и напряжения в цепи переменного тока. Мощность в цепи переменного тока. Резонанс в электрической цепи. Производство, передача и потребление электрической энергии. Генерирование энергии. Трансформатор. Передача электрической энергии. Механические волны. Продольные и поперечные Скорость распространения волны. волны. волны. Уравнение гармонической бегущей волны. Звуковые волны. Электромагнитные волны. Излучение электромагнитных волн. Свойства электромагнитных волн. Принципы радиосвязи. Радиолокация, телевидение, сотовая связь.

Лабораторная работа:

3. Определение ускорения свободного падения при помощи маятника.

Оптика (16 ч)

Свет. Скорость света. Распространение света. Законы отражения преломления света. Полное внутреннее отражение света. Линза. Получение изображения с помощью линзы. Формула тонкой линзы. Оптические приборы. Разрешающая способность. Свет как электромагнитная волна. Дисперсия света. Интерференция света. Когерентность. Дифракция света. Дифракционная решётка. Поперечность световых волн. Поляризация света. специальной Основы теории относительности. Постулаты Принцип относительности Эйнштейна. относительности. скорости света. Пространство и время специальной теории относительности. Релятивистская динамика. Связь массы и энергии. Излучение и спектры. Шкала электромагнитных волн.

Лабораторные работы:

4. Измерение показателя преломления стекла.

- 5. Определение оптической силы и фокусного расстояния собирающей линзы.
- 6. Измерение длины световой волны.
- 7. Наблюдение сплошного и линейчатого спектров.

Квантовая физика (15 ч)

Световые кванты. Постоянная Планка. Фотоэффект. Уравнение Эйнштейна для фотоэффекта. Фотоны. Корпускулярно-волновой дуализм. Гипотеза де Бройля. Давление света. Применение фотоэффекта. Атомная физика. Строение атома. Опыты Резерфорда. Квантовые постулаты Бора. Модель атома водорода по Бору. Трудности теории Бора. Лазеры. Методы регистрации частиц. Альфа-, бета- и гамма-излучение. Радиоактивные превращения. Закон радиоактивного распада. Протонно-нейтронная модель строения атомного ядра. Дефект масс и энергия связи нуклонов в ядре. Деление и синтез ядер. Ядерная энергетика. Биологическое действие радиоактивного излучения. Элементарные частицы. Античастицы.

Лабораторная работа:

8. Определение импульса и энергии частицы при движении в магнитном поле (по фотографиям).

Астрономия (4 ч)

Видимое движение небесных тел. Законы движения планет. Строение Солнечной системы. Система Земля—Луна. Основные характеристики звёзд. Солнце. Современные представления о происхождении и эволюции звёзд, галактик, Вселенной.

Итоговая контрольная работа (1 ч)

Обобщение (1 ч)

10 класс

№ п/п	Тема, раздел	Кол-во часов
1	Введение	1
2	Механика	26
3	Молекулярная физика. Термодинамика	17
4	Электродинамика	22
5	Итоговая контрольная работа	1
6	Обобщение	1
ИТОГО:		68

Тематическое планирование

11 класс

№	Название	Кол-во
п/п	раздела, темы	часов
1	Электродинамика	11
2	Колебания и волны	20
3	Оптика	16
4	Квантовая физика	15
5	Астрономия	4
6	Итоговая контрольная работа	1
7	Повторение	1
ИТОГО:		68